
WLAN System Toolbox™

User's Guide

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

WLAN System Toolbox™ User's Guide
© COPYRIGHT 2015–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
October 2015 Online only New for Version 1.0 (R2015b)
March 2016 Online only Revised for Version 1.1 (Release 2016a)
September 2016 Online only Revised for Version 1.2 (Release 2016b)
March 2017 Online only Revised for Version 1.3 (Release 2017a)
May 2017 Online only Revised for Version 1.4 (Release 2017b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Tutorials
1

WLAN Parameterization . 1-2
Configuration Objects in WLAN System Toolbox 1-2

WLAN Packet Structure . 1-4
Physical Layer Conformance Procedure Protocol Data Unit . . 1-4

Mapping of 802.11 Standards to WLAN System Toolbox
Configuration Functions . 1-31

What is C Code Generation from MATLAB? 1-32
Set Up Your Compiler . 1-33
Functions and System Objects That Support Code

Generation . 1-33

Functions and System Objects Supported for MATLAB Coder
and Compiler . 1-34

Build DMG PPDU . 1-37

Build S1G PPDU . 1-39

Build VHT PPDU . 1-41

Build HT PPDU . 1-44

Build Non-HT PPDU . 1-47

Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in
Fading Channel . 1-50

End-to-End VHT Simulation with Frequency Correction . . 1-55

iii

Contents

Transmit-Receive Chain . 1-58
Transmit Processing Chain . 1-58
Receiver Processing Chain . 1-64

Delay Profile and Fluorescent Lighting Effects 1-71

Generate Multi-User VHT Waveform 1-76

Basic VHT Data Recovery Steps . 1-81

Packet Size and Duration Dependencies 1-87

iv Contents

Tutorials

• “WLAN Parameterization” on page 1-2
• “WLAN Packet Structure” on page 1-4
• “Mapping of 802.11 Standards to WLAN System Toolbox Configuration Functions”

on page 1-31
• “What is C Code Generation from MATLAB?” on page 1-32
• “Functions and System Objects Supported for MATLAB Coder and Compiler”

on page 1-34
• “Build DMG PPDU” on page 1-37
• “Build S1G PPDU” on page 1-39
• “Build VHT PPDU” on page 1-41
• “Build HT PPDU” on page 1-44
• “Build Non-HT PPDU” on page 1-47
• “Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel”

on page 1-50
• “End-to-End VHT Simulation with Frequency Correction” on page 1-55
• “Transmit-Receive Chain” on page 1-58
• “Delay Profile and Fluorescent Lighting Effects” on page 1-71
• “Generate Multi-User VHT Waveform” on page 1-76
• “Basic VHT Data Recovery Steps” on page 1-81
• “Packet Size and Duration Dependencies” on page 1-87

1

WLAN Parameterization
WLAN System Toolbox configuration objects initialize, store, and validate configuration
properties. The functions in the toolbox use these properties to initialize parameter
settings that define the characteristics of waveforms generated and to define the recovery
process.

Configuration Objects in WLAN System Toolbox

The configuration objects are designed specifically as containers to store properties. They
also provide some level of data validation for the function inputs that they maintain.
Functions perform further data validation across input settings based on runtime
conditions.

The configuration objects are optimized for iterative computations that process large
streams of data, such as communications systems.

WLAN System Toolbox configuration objects define and configure format-specific and
function-specific properties. The property page of each object contains descriptions, valid
settings, ranges, and other information about the object properties.

• wlanDMGConfig — The DMG configuration object defines and configures directional
multi-gigabit (DMG) transmission PPDUs. See wlanDMGConfig.

• wlanS1GConfig — The S1G configuration object defines and configures sub 1 GHz
(S1G) transmission PPDUs. See wlanS1GConfig.

• wlanVHTConfig — The VHT configuration object defines and configures very high
throughput (VHT) transmission PPDUs. See wlanVHTConfig.

• wlanHTConfig — The HT configuration object defines and configures high
throughput (HT) transmission PPDUs. See wlanHTConfig.

• wlanNonHTConfig — The non-HT configuration object defines and configures non-
high throughput (non-HT) transmission PPDUs. See wlanNonHTConfig.

• wlanGeneratorConfig — The generator configuration object defines and configures
waveform generation characteristics for transmission of WLAN PPDUs. See
wlanGeneratorConfig.

• wlanRecoveryConfig — The recovery configuration object defines and configures
information recovery characteristics for received WLAN transmission PPDUs. See
wlanRecoveryConfig.

1 Tutorials

1-2

See Also
“WLAN Packet Structure” on page 1-4 | “Mapping of 802.11 Standards to WLAN
System Toolbox Configuration Functions” on page 1-31 | “Create Configuration
Objects” | “What Is WLAN?”

 See Also

1-3

WLAN Packet Structure

Physical Layer Conformance Procedure Protocol Data Unit

IEEE® 802.11™12 is a packet-based protocol. Each physical layer conformance procedure
(PLCP) protocol data unit (PPDU) contains preamble and data fields. The preamble field
contains the transmission vector format information. The data field contains the user
payload and higher layer headers, such as MAC fields and CRC. The transmission vector
format and the PPDU packet structure vary depending on the 802.11 version being
configured for transmission. The transmission vector (TXVECTOR) format parameter is
classified as:

• DMG to specify a directional multi-gigabit PHY implementation.

• DMG refers to preamble fields formatted for association with 802.11ad™ data.
IEEE Std 802.11ad-2012 [4] Section 21.3-21.6 defines and describes the DMG PHY
layer and PPDU.

• For DMG, the TXVECTOR parameters, as defined in IEEE Std 802.11ad-2012 [4]
Table 21-1, determines the structure of PPDUs transmitted by a DMG STA. For a
DMG STA, the MCS parameter determines the overall structure of the DMG
PPDU.

• S1G to specify a sub 1 GHz PHY implementation.

• S1G refers to preamble fields formatted for association with 802.11ah™ data. The
draft standard IEEE P802.11ah/D5.0, defines and describes the S1G PHY layer
and PPDU.

• For S1G, the TXVECTOR parameters, as defined in IEEE P802.11ah/D5.0, Table
24-1, determines the structure of PPDUs transmitted by an S1G STA. For an S1G
STA, the FORMAT parameter determines the overall structure of the S1G PPDU.

• VHT to specify a very high throughput PHY implementation.

• VHT refers to preamble fields formatted for association with 802.11ac data. IEEE
IEEE Std 802.11ac-2013 [3], Section 22 defines and describes the VHT PHY layer
and PPDU.

1. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

2. IEEE Std 802.11ac™-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1 Tutorials

1-4

• For VHT, the TXVECTOR parameters, as defined in IEEE Std 802.11ac-2013 [3],
Table 22-1, determine the structure of PPDUs transmitted by a VHT STA. For a
VHT STA, the FORMAT parameter determines the overall structure of the PPDU
and enables:

• Non-HT format (NON_HT), based on Section 18 and including non-HT
duplicate format.

• HT-mixed format (HT_MF), as specified in Section 20.
• HT-greenfield format (HT_GF), as specified in Section 20. WLAN System

Toolbox does not support HT_GF format.
• VHT format (VHT), as specified in Section 22. The VHT format PPDUs contain

a preamble compatible with Section 18 and Section 20 STAs. The non-VHT
portions of the VHT format preamble (the parts of VHT preamble preceding the
VHT-SIG-A field) are defined to enable decoding of the PPDU by VHT STAs.

• HT to specify a high throughput PHY implementation.

• HT refers to preamble fields formatted for association with 802.11n™ data. IEEE
Std 802.11-2012 [2], Section 20 defines and describes the HT PHY layer and
PPDU. The standard defines two HT formats:

• HT_MF indicates the HT-mixed format and contains a preamble compatible
with HT and non-HT receivers. Support for HT-mixed format is mandatory.

• • HT_GF indicates the HT-greenfield format and does not contain a non-HT
compatible part. WLAN System Toolbox does not support HT_GF format.

• non-HT to specify a PHY implementation that is not HT and is not VHT.

• Non-HT refers to preamble fields formatted for association with pre-802.11n data.
IEEE Std 802.11-2012 [2], Section 18 defines and describes the OFDM PHY layer
and PPDU for non-HT transmission. In addition to supporting non-HT
synchronization, the non-HT preamble fields are used in support of HT and VHT
synchronization.

The table shows 802.11 versions that the toolbox supports, along with the supported
TXVECTOR options and associated modulation formats.
802.11 version Transmission Vector

Format
Modulation format Bandwidths (MHz)

802.11b non-HT DSSS/CCK 11
802.11a non-HT OFDM only 5, 10, 20

 WLAN Packet Structure

1-5

802.11 version Transmission Vector
Format

Modulation format Bandwidths (MHz)

802.11j non-HT OFDM only 10
802.11p non-HT OFDM only 5, 10

802.11g
non-HT OFDM 20
non-HT DSSS/CCK 11

802.11n HT_MF, Non-HT OFDM only 20, 40
802.11ac VHT, HT_MF, Non-

HT
OFDM only 20, 40, 80, 160

802.11ah S1G OFDM only 1, 2, 4, 8, 16
802.11ad DMG Single Carrier and

OFDM
2640

WLAN System Toolbox configuration objects define the properties that enable creation of
PPDUs and waveforms for the specified 802.11 transmission format. See
wlanDMGConfig, wlanS1GConfig, wlanVHTConfig, wlanHTConfig, wlanNonHTConfig,
and wlanGeneratorConfig.

DMG Format PPDU Field Structure

In DMG, there are three physical layer (PHY) modulation schemes supported: control,
single carrier, and OFDM.

1 Tutorials

1-6

The single-carrier chip timing, TC = 1/FC = 0.57 ns. For more information, see Waveform
Sampling Rate on the wlanWaveformGenerator function reference page.

The supported DMG format PPDU field structures each contain these fields:

• The preamble contains a short training field (STF) and channel estimation field
(CEF). The preamble is used for packet detection, AGC, frequency offset estimation,
synchronization, indication of modulation type (Control, SC, or OFDM), and channel
estimation. The format of the preamble is common to the Control, SC, and OFDM
PHY packets.

• The STF is composed of Golay Ga sequences as specified in 802.11ad-2012 [4],
Section 21.3.6.2.

• The CEF is composed of Golay Gu and Gv sequences as specified in 802.11ad-2012
[4], Section 21.3.6.3.

 WLAN Packet Structure

1-7

• When the header and data fields of the packet are modulated using a single
carrier (control PHY and SC PHY), the Golay sequencing for the CEF waveform
is shown in 802.11ad-2012 [4], Figure 21-5.

• When the header and data fields of the packet are modulated using OFDM
(OFDM PHY), the Golay sequencing for the CEF waveform is shown in
802.11ad-2012 [4], Figure 21-6.

• The header field is decoded by the receiver to determine transmission parameters.
• The data field is variable in length. It carries the user data payload.
• The training fields (AGC and TRN-R/T subfields) are optional. They can be included

to refine beamforming.

IEEE 802.11ad-2012 [4] specifies the common aspects of the DMG PPDU packet
structure in Section 21.3. The PHY modulation-specific aspects of the packet structure
are specified in these sections:

• The DMG control PHY packet structure is specified in Section 21.4.
• The DMG OFDM PHY packet structure is specified in Section 21.5.
• The DMG SC PHY packet structure is specified in Section 21.6.

S1G Format PPDU Field Structure

In S1G, there are three transmission modes:

• ≥2-MHz long preamble mode
• ≥2-MHz short preamble mode
• 1-MHz mode

Each transmission mode has a specific PPDU preamble structure:

• An S1G ≥2-MHz long preamble mode PPDU supports single-user and multi-user
transmissions. The long preamble PPDU consists of two portions; the omni-directional
portion and the beam-changeable portion.

1 Tutorials

1-8

• The omni-directional portion is transmitted to all users without beamforming. It
consists of three fields:

• The short training field (STF) is used for coarse synchronization.
• The long training field (LTF1) is used for fine synchronization and initial

channel estimation.
• The signal A field (SIG-A) is decoded by the receiver to determine transmission

parameters relevant to all users.
• The data portion can be beamformed to each user. It consists of four fields:

• The beamformed short training field (D-STF) is used by the receiver for
automatic gain control.

• The beamformed long training fields (D-LTF-N) are used for MIMO channel
estimation.

• The signal B field (SIG-B) in a multi-user transmission, signals the MCS for
each user. In a single-user transmission, the MCS is signaled in the SIG-A field
of the omni-directional portion of the preamble. Therefore, in a single-user
transmission the SIG-B symbol transmitted is an exact repetition of the first D-
LTF. This repetition allows for improved channel estimation.

• The data field is variable in length. It carries the user data payload.
• An S1G ≥2-MHz short preamble mode PPDU supports single-user transmissions. All

fields in the PPDU can be beamformed.

 WLAN Packet Structure

1-9

The PPDU consists of these five fields:

• The short training field (STF) is used for coarse synchronization.
• The first long training field (LTF1) is used for fine synchronization and initial

channel estimation.
• The signaling field (SIG) is decoded by the receiver to determine transmission

parameters.
• The subsequent long training fields (LTF2-N) are used for MIMO channel

estimation. NSYMBOLS = 1 per subsequent LTF
• The data field is variable in length. It carries the user data payload.

• An S1G 1-MHz mode PPDU supports single-user transmissions. It is composed of the
same five fields as the S1G ≥2-MHz short preamble mode PPDU and all fields can be
beamformed. An S1G 1-MHz mode PPDU has longer STF, LTF1, and SIG fields so
this narrower bandwidth mode can achieve sensitivity that is similar to the S1G ≥2-
MHz short preamble mode transmissions.

1 Tutorials

1-10

VHT, HT-Mixed, and Non-HT Format PPDU Field Structures

The field structure for VHT, HT, and non-HT PPDUs consist of preamble and data
portions. The legacy preamble fields (L-STF, L-LTF, and L-SIG) are common to VHT,
HT, and non-HT format preambles. VHT and HT format preamble fields include
additional format-specific training and signaling fields. Each format defines a data field
for transmission of user payload data.

 WLAN Packet Structure

1-11

PPDU Field Abbreviation Description
L-STF Non-HT Short Training field
L-LTF Non-HT Long Training field
L-SIG Non-HT SIGNAL field
HT-SIG HT SIGNAL field
HT-STF HT Short Training field
HT-LTF HT Long Training field, multiple HT-LTFs

are transmitted as indicated by the MCS
VHT-SIG-A VHT Signal A field
VHT-STF VHT Short Training field
VHT-LTF VHT Long Training field

1 Tutorials

1-12

PPDU Field Abbreviation Description
VHT-SIG-B VHT Signal B field
Data VHT, HT, and non-HT Data fields include

the service bits, PSDU, tail bits, and pad
bits

See IEEE 802.11-2012 [2], Section 20.3.2 for more information.

Non-HT (Legacy) Short Training Field

The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy
preamble. The L-STF is a component of VHT, HT, and non-HT PPDUs.

The L-STF duration varies with channel bandwidth.
Channel Bandwidth
(MHz)

Subcarrier Frequency
Spacing, ΔF (kHz)

Fast Fourier
Transform (FFT)
Period (TFFT = 1 / ΔF)

L-STF Duration
(TSHORT = 10 × TFFT / 4
)

20, 40, 80, and 160 312.5 3.2 μs 8 μs
10 156.25 6.4 μs 16 μs
5 78.125 12.8 μs 32 μs
Because the sequence has good correlation properties, it is used for start-of-packet
detection, for coarse frequency correction, and for setting the AGC. The sequence uses 12
of the 52 subcarriers that are available per 20 MHz channel bandwidth segment. For 5
MHz, 10 MHz, and 20 MHz bandwidths, the number of channel bandwidths segments is
1.

 WLAN Packet Structure

1-13

Non-HT (Legacy) Long Training Field

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP
legacy preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

The L-LTF duration varies with channel bandwidth.

1 Tutorials

1-14

Channel
Bandwidth (MHz)

Subcarrier
Frequency
Spacing, ΔF
(kHz)

Fast Fourier
Transform (FFT)
Period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training Symbol
Guard Interval
(GI2) Duration
(TGI2 = TFFT / 2)

L-LTF Duration
(TLONG = TGI2 + 2
× TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

Non-HT (Legacy) Signal Field

The legacy signal (L-SIG) field is the third field of the 802.11 OFDM PLCP legacy
preamble. It consists of 24 bits that contain rate, length, and parity information. The L-
SIG is a component of VHT, HT, and non-HT PPDUs. It is transmitted using BPSK
modulation with rate 1/2 binary convolutional coding (BCC).

The L-SIG is one OFDM symbol with a duration that varies with channel bandwidth.
Channel
Bandwidth (MHz)

Subcarrier
frequency
spacing, ΔF (kHz)

Fast Fourier
Transform (FFT)
period
(TFFT = 1 / ΔF)

Guard Interval
(GI) Duration
(TGI = TFFT / 4)

L-SIG duration
(TSIGNAL = TGI + T
FFT)

20, 40, 80, and
160

312.5 3.2 μs 0.8 μs 4 μs

10 156.25 6.4 μs 1.6 μs 8 μs

 WLAN Packet Structure

1-15

Channel
Bandwidth (MHz)

Subcarrier
frequency
spacing, ΔF (kHz)

Fast Fourier
Transform (FFT)
period
(TFFT = 1 / ΔF)

Guard Interval
(GI) Duration
(TGI = TFFT / 4)

L-SIG duration
(TSIGNAL = TGI + T
FFT)

5 78.125 12.8 μs 3.2 μs 16 μs

The L-SIG contains packet information for the received configuration,

• Bits 0 through 3 specify the data rate (modulation and coding rate) for the non-HT
format.

Rate (bits 0–
3)

Modulation Coding rate
(R)

Data Rate (Mb/s)
20 MHz
channel

bandwidth

10 MHz
channel

bandwidth

5 MHz
channel

bandwidth
1101 BPSK 1/2 6 3 1.5
1111 BPSK 3/4 9 4.5 2.25
0101 QPSK 1/2 12 6 3
0111 QPSK 3/4 18 9 4.5
1001 16-QAM 1/2 24 12 6
1011 16-QAM 3/4 36 18 9
0001 64-QAM 2/3 48 24 12
0011 64-QAM 3/4 54 27 13.5

For HT and VHT formats, the L-SIG rate bits are set to '1 1 0 1'. Data rate
information for HT and VHT formats is signaled in format-specific signaling fields.

• Bit 4 is reserved for future use.

1 Tutorials

1-16

• Bits 5 through 16:

• For non-HT, specify the data length (amount of data transmitted in octets) as
described in IEEE Std 802.11-2012, Table 18-1 and Section 9.23.4.

• For HT-mixed, specify the transmission time as described in IEEE Std
802.11-2012, Section 20.3.9.3.5 and Section 9.23.4.

• For VHT, specify the transmission time as described in IEEE Std 802.11ac-2013,
Section 22.3.8.2.4.

• Bit 17 has the even parity of bits 0 through 16.
• Bits 18 through 23 contain all zeros for the signal tail bits.

Note Signaling fields added for HT (wlanHTSIG) and VHT (wlanVHTSIGA,
wlanVHTSIGB) formats provide data rate and configuration information for those
formats.

• For the HT-mixed format, IEEE Std 802.11-2012, Section 20.3.9.4.3 describes HT-SIG
bit settings.

• For the VHT format, IEEE Std 802.11ac-2013, Section 22.3.8.3.3 and Section
22.3.8.3.6 describe bit settings for VHT-SIG-A and VHT-SIG-B, respectively.

Non-HT Data Field

The non-high throughput data (non-HT data) field is used to transmit MAC frames and
is composed of a service field, a PSDU, tail bits, and pad bits.

 WLAN Packet Structure

1-17

• Service field — Contains 16 zeros to initialize the data scrambler.
• PSDU — Variable-length field containing the PLCP service data unit (PSDU).
• Tail — Tail bits required to terminate a convolutional code. The field uses six zeros

for the single encoding stream.
• Pad Bits — Variable-length field required to ensure that the non-HT data field

contains an integer number of symbols.

Processing of an 802.11a™ data field is defined in IEEE 802.11-2012 [2], Section 18.3.5.

The six tail bits are set to zero after a 127-bit scrambling sequence has been applied to
the full data field. The receiver uses the first seven bits of the service field to determine
the initial state of the scrambler. Rate 1/2 BCC encoding is performed on the scrambled
data. The zeroed tail bits cause the BCC encoder to return to a zero state. Puncturing is
applied as needed for the selected rate.

The coded data is grouped into several bits per symbol, and two permutations of block
interleaving are applied to each group of data. The groups of bits are then modulated to
the selected rate (BPSK, QPSK, 16-QAM, or 64-QAM) and the complex symbols are then
mapped onto corresponding subcarriers. For each symbol, the pilot subcarriers are
inserted. An IFFT is used to transform each symbol group to the time domain and the
cyclic prefix is prepended.

The final processing preceding DAC up-conversion to RF and the power amplifier is to
apply a pulse shaping filter on the data to smooth transitions between symbols. The

1 Tutorials

1-18

standard provides an example pulse shaping function but does not specifically require
one.

High Throughput Signal Field

The high throughput signal (HT-SIG) field is located between the L-SIG field and HT-
STF and is part of the HT-mixed format preamble. It is composed of two symbols, HT-
SIG1 and HT-SIG2.

HT-SIG carries information used to decode the HT packet, including the MCS, packet
length, FEC coding type, guard interval, number of extension spatial streams, and
whether there is payload aggregation. The HT-SIG symbols are also used for auto-
detection between HT-mixed format and legacy OFDM packets.

 WLAN Packet Structure

1-19

Refer to IEEE Std 802.11-2012, Section 20.3.9.4.3 for a detailed description of the HT-
SIG field.

High Throughput Short Training Field

The high throughput short training field (HT-STF) is located between the HT-SIG and
HT-LTF fields of an HT-mixed packet. The HT-STF is 4 μs in length and is used to
improve automatic gain control estimation for a MIMO system. For a 20 MHz
transmission, the frequency sequence used to construct the HT-STF is identical to that of
the L-STF. For a 40 MHz transmission, the upper subcarriers of the HT-STF are
constructed from a frequency-shifted and phase-rotated version of the L-STF.

1 Tutorials

1-20

High Throughput Long Training Fields

The high throughput long training field (HT-LTF) is located between the HT-STF and
data field of an HT-mixed packet.

As described in IEEE Std 802.11-2012, Section 20.3.9.4.6, the receiver can use the HT-
LTF to estimate the MIMO channel between the set of QAM mapper outputs (or, if STBC
is applied, the STBC encoder outputs) and the receive chains. The HT-LTF portion has
one or two parts. The first part consists of one, two, or four HT-LTFs that are necessary
for demodulation of the HT-Data portion of the PPDU. These HT-LTFs are referred to as
HT-DLTFs. The optional second part consists of zero, one, two, or four HT-LTFs that can
be used to sound extra spatial dimensions of the MIMO channel not utilized by the HT-
Data portion of the PPDU. These HT-LTFs are referred to as HT-ELTFs. Each HT long
training symbol is 4 μs. The number of space-time streams and the number of extension
streams determines the number of HT-LTF symbols transmitted.

Tables 20-12, 20-13 and 20-14 from IEEE Std 802.11-2012 are reproduced here.

 WLAN Packet Structure

1-21

NSTS Determination NHTDLTF Determination NHTELTF Determination
Table 20-12 defines the
number of space-time
streams (NSTS) based on the
number of spatial streams
(NSS) from the MCS and the
STBC field.

Table 20-13 defines the
number of HT-DLTFs
required for the NSTS.

Table 20-14 defines the
number of HT-ELTFs
required for the number of
extension spatial streams
(NESS). NESS is defined in
HT-SIG2.

NSS from
MCS

STBC
field

NSTS

1 0 1
1 1 2
2 0 2
2 1 3
2 2 4
3 0 3
3 1 4
4 0 4

NSTS NHTDLTF

1 1
2 2
3 4
4 4

NESS NHTELTF

0 0
1 1
2 2
3 4

Additional constraints include:

• NHTLTF = NHTDLTF + NHTELTF ≤ 5.
• NSTS + NESS ≤ 4.

• When NSTS = 3, NESS cannot exceed one.
• If NESS = 1 when NSTS = 3 then NHTLTF = 5.

HT Data Field

The high throughput data field (HT-Data) follows the last HT-LTF of an HT-mixed
packet.

1 Tutorials

1-22

The high throughput data field is used to transmit one or more frames from the MAC
layer and consists of four subfields.

• Service field — Contains 16 zeros to initialize the data scrambler.
• PSDU — Variable-length field containing the PLCP service data unit (PSDU). In

802.11, the PSDU can consist of an aggregate of several MAC service data units.
• Tail — Tail bits required to terminate a convolutional code. The field uses six zeros

for each encoding stream.
• Pad Bits — Variable-length field required to ensure that the HT-Data field consists

of an integer number of symbols.

Very High Throughput SIG-A Field

The very high throughput signal A (VHT-SIG-A) field contains information required to
interpret VHT format packets. Similar to the non-HT signal (L-SIG) field for the non-HT
OFDM format, this field stores the actual rate value, channel coding, guard interval,
MIMO scheme, and other configuration details for the VHT format packet. Unlike the
HT-SIG field, this field does not store the packet length information. Packet length
information is derived from L-SIG and is captured in the VHT-SIG-B field for the VHT
format.

The VHT-SIG-A field consists of two symbols: VHT-SIG-A1 and VHT-SIG-A2. These
symbols are located between the L-SIG and the VHT-STF portion of the VHT format
PPDU.

 WLAN Packet Structure

1-23

The VHT-SIG-A field is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.3.

The VHT-SIG-A field includes these components. The bit field structures for VHT-SIG-
A1 and VHT-SIG-A2 vary for single user or multi-user transmissions.

• BW — A two-bit field that indicates 0 for 20 MHz, 1 for 40 MHz, 2 for 80 MHz, or 3
for 160 MHz.

• STBC — A bit that indicates the presence of space-time block coding.
• Group ID — A six-bit field that indicates the group and user position assigned to a

STA.

1 Tutorials

1-24

• NSTS — A three-bit field for a single user or 4 three-bit fields for a multi-user scenario,
that indicates the number of space-time streams per user.

• Partial AID — An identifier that combines the association ID and the BSSID.
• TXOP_PS_NOT_ALLOWED — An indicator bit that shows if client devices are

allowed to enter dose state. This bit is set to false when the VHT-SIG-A structure is
populated, indicating that the client device is allowed to enter dose state.

• Short GI — A bit that indicates use of the 400 ns guard interval.
• Short GI NSYM Disambiguation — A bit that indicates if an extra symbol is

required when the short GI is used.
• SU/MU[0] Coding — A bit field that indicates if convolutional or LDPC coding is

used for a single user or for user MU[0] in a multi-user scenario.
• LDPC Extra OFDM Symbol — A bit that indicates if an extra OFDM symbol is

required to transmit the data field.
• MCS — A four-bit field.

• For a single user scenario, it indicates the modulation and coding scheme used.
• For a multi-user scenario, it indicates use of convolutional or LDPC coding and the

MCS setting is conveyed in the VHT-SIG-B field.
• Beamformed — An indicator bit set to 1 when a beamforming matrix is applied to

the transmission.
• CRC — An eight-bit field used to detect errors in the VHT-SIG-A transmission.
• Tail — A six-bit field used to terminate the convolutional code.

Very High Throughput Short Training Field

The very high throughput short training field (VHT-STF) is a single OFDM symbol (4 μs
in length) that is used to improve automatic gain control estimation in a MIMO
transmission. It is located between the VHT-SIG-A and VHT-LTF portions of the VHT
packet.

 WLAN Packet Structure

1-25

The frequency domain sequence used to construct the VHT-STF for a 20 MHz
transmission is identical to the L-STF sequence. Duplicate L-STF sequences are
frequency shifted and phase rotated to support VHT transmissions for the 40 MHz, 80
MHz, and 160 MHz channel bandwidths. As such, the L-STF and HT-STF are subsets of
the VHT-STF.

The VHT-STF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.4.

Very High Throughput Long Training Fields

The very high throughput long training field (VHT-LTF) is located between the VHT-STF
and VHT-SIG-B portion of the VHT packet.

It is used for MIMO channel estimation and pilot subcarrier tracking. The VHT-LTF
includes one VHT long training symbol for each spatial stream indicated by the selected
MCS. Each symbol is 4 μs long. A maximum of eight symbols are permitted in the VHT-
LTF.

The VHT-LTF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.5.

Very High Throughput SIG-B Field

The very high throughput signal B field (VHT-SIG-B) is used for multi-user scenario to
set up the data rate and to fine-tune MIMO reception. It is modulated using MCS 0 and
is transmitted in a single OFDM symbol.

The VHT-SIG-B field consists of a single OFDM symbol located between the VHT-LTF
and the data portion of the VHT format PPDU.

1 Tutorials

1-26

The very high throughput signal B (VHT-SIG-B) field contains the actual rate and A-
MPDU length value per user. The VHT-SIG-B is defined in IEEE Std 802.11ac-2013,
Section 22.3.8.3.6, and Table 22–14. The number of bits in the VHT-SIG-B field varies
with the channel bandwidth and the assignment depends on whether single user or
multi-user scenario in allocated. For single user configurations, the same information is
available in the L-SIG field but the VHT-SIG-B field is included for continuity purposes.
Field VHT MU PPDU Allocation (bits) VHT SU PPDU Allocation (bits) Descriptio

n
 20 MHz 40 MHz 80 MHz,

160 MHz
20 MHz 40 MHz 80 MHz,

160 MHz

VHT-
SIG-B

B0-15 (16) B0-16 (17) B0-18 (19) B0-16 (17) B0-18 (19) B0-20 (21) A
variable-
length
field that
indicates
the size
of the
data
payload
in four-
byte
units.
The
length of
the field
depends
on the
channel
bandwidt
h.

 WLAN Packet Structure

1-27

Field VHT MU PPDU Allocation (bits) VHT SU PPDU Allocation (bits) Descriptio
n

 20 MHz 40 MHz 80 MHz,
160 MHz

20 MHz 40 MHz 80 MHz,
160 MHz

VHT-
MCS

B16-19 (4) B17-20 (4) B19-22 (4) N/A N/A N/A A four-bit
field that
is
included
for multi-
user
scenarios
only.

Reserved N/A N/A N/A B17–19
(3)

B19-20 (2) B21-22 (2) All ones

Tail B20-25 (6) B21-26 (6) B23-28 (6) B20-25 (6) B21-26 (6) B23-28 (6) Six zero-
bits used
to
terminat
e the
convoluti
onal
code.

Total #
bits

26 27 29 26 27 29

Bit field
repetitio
n

1 2 4
For 160
MHz, the
80 MHz
channel is
repeated
twice.

1 2 4
For 160
MHz, the
80 MHz
channel is
repeated
twice.

For a null data packet (NDP), the VHT-SIG-B bits are set according to IEEE Std
802.11ac-2013, Table 22-15.

1 Tutorials

1-28

VHT Data Field

The very high throughput data (VHT data) field is used to transmit one or more frames
from the MAC layer. It follows the VHT-SIG-B field in the packet structure for the VHT
format PPDUs.

The VHT data field is defined in IEEE Std 802.11ac-2013, Section 22.3.10. It is composed
of four subfields.

• Service field — Contains a seven-bit scrambler initialization state, one bit reserved
for future considerations, and eight bits for the VHT-SIG-B CRC field.

• PSDU — Variable-length field containing the PLCP service data unit. In 802.11, the
PSDU can consist of an aggregate of several MAC service data units.

 WLAN Packet Structure

1-29

• PHY Pad — Variable number of bits passed to the transmitter to create a complete
OFDM symbol.

• Tail — Bits used to terminate a convolutional code. Tail bits are not needed when
LDPC is used.

References

[1] IEEE 802.11™: Wireless LANs. http://standards.ieee.org/about/get/802/802.11.html

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[3] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[4] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

[5] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac.
2nd Edition. United Kingdom: Cambridge University Press, 2013.

See Also
“Waveform Generation” | “What Is WLAN?” | “Mapping of 802.11 Standards to WLAN
System Toolbox Configuration Functions” on page 1-31

1 Tutorials

1-30

Mapping of 802.11 Standards to WLAN System Toolbox
Configuration Functions

The table shows the mapping from 802.11 versions to the associated packet format and
WLAN System Toolbox configuration object function.
802.11 Version Transmission Packet

Format
Toolbox Configuration
Function

Packet Format
Properties

802.11 b/a/g/j/p non-HT wlanNonHTConfig wlanNonHTConfig
802.11n HT wlanHTConfig wlanHTConfig
802.11ac VHT wlanVHTConfig wlanVHTConfig
802.11ah S1G wlanS1GConfig wlanS1GConfig
802.11ad DMG wlanDMGConfig wlanDMGConfig
WLAN System Toolbox configuration objects define the properties that enable creation of
PPDUs and waveforms for the specified 802.11 transmission format.

See Also
“WLAN Parameterization” on page 1-2 | “WLAN Packet Structure” on page 1-4 |
“Create Configuration Objects” | “Waveform Generation”

 Mapping of 802.11 Standards to WLAN System Toolbox Configuration Functions

1-31

What is C Code Generation from MATLAB?
You can use WLAN System Toolbox together with MATLAB® Coder™ to create C/C++
code that implements your MATLAB functions and models. With this software, you can

• Create a MEX file to speed up your own MATLAB application.
• Generate a stand-alone executable that runs independently of MATLAB on your own

computer or another platform.
• Include System objects in the same way as any other element.

In general, the code you generate using the toolbox is portable ANSI® C code. In order to
use code generation, you need a MATLAB Coder license. Using WLAN System Toolbox
requires licenses for DSP System Toolbox™, Signal Processing Toolbox™, and
Communications System Toolbox™. See the “Getting Started with MATLAB Coder”
(MATLAB Coder) page for more information.

Creating a MATLAB Coder MEX-file can lead to substantial acceleration of your
MATLAB algorithms. It is also a convenient first step in a workflow that ultimately leads
to completely standalone code. When you create a MEX-file, it runs in the MATLAB
environment. Its inputs and outputs are available for inspection just like any other
MATLAB variable. You can use MATLAB’s visualization, and other tools, for verification
and analysis.

Within your code, you can run specific commands either as generated C code or by
running using the MATLAB engine. In cases where an isolated command does not yet
have code generation support, you can use the coder.extrinsic command to embed
the command in your code. This means that the generated code reenters the MATLAB
environment when it needs to run that particular command. This also useful if you wish
to embed certain commands that cannot generate code (such as plotting functions).

The simplest way to generate MEX-files from your MATLAB code is by using the
codegen function at the command line. Often, generating a MEX-files involves nothing
more than invoking the coder command on one of your existing functions. For example,
if you have an existing function, myfunction.m, you can type the commands at the
command line to compile and run the MEX function. codegen adds a platform-specific
extension to this name. In this case, the "mex" suffix is added.

codegen myfunction.m
myfunction_mex;

1 Tutorials

1-32

You can generate standalone executables that run independently of the MATLAB
environment. You can do this by creating a MATLAB Coder project inside the MATLAB
Coder Integrated Development Environment (IDE). Alternatively, you can issue the
codegen command in the command line environment with appropriate configuration
parameters. To create a standalone executable, you must write your own main.c or
main.cpp function. See “C/C++ Code Generation” (MATLAB Coder) for more
information.

Set Up Your Compiler

Before using codegen to compile your code, you must set up your C/C++ compiler. For
32-bit Windows platforms, MathWorks® supplies a default compiler with MATLAB. If
your installation does not include a default compiler, you can supply your own compiler.
For the current list of supported compilers, see Supported and Compatible Compilers on
the MathWorks Web site. Install a compiler that is suitable for your platform. Then, read
“Setting Up the C or C++ Compiler” (MATLAB Coder). After installation, at the
MATLAB command prompt, run mex -setup. You can then use the codegen function to
compile your code.

Functions and System Objects That Support Code Generation

All WLAN System Toolbox functions and System objects are supported for code
generation. For a list of supported functions and System objects, see “WLAN System
Toolbox” (MATLAB Coder).

 What is C Code Generation from MATLAB?

1-33

http://www.mathworks.com/support/compilers/current_release/

Functions and System Objects Supported for MATLAB Coder
and Compiler

These functions and System objects support code generation from MATLAB code. Code
generation from MATLAB code requires the MATLAB Coder software.

If you have a MATLAB Compiler™ license, you can generate standalone applications
that contain WLAN System Toolbox functions, System objects, and classes.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

WLAN Modeling
wlanHTConfig*
wlanNonHTConfig*
wlanRecoveryConfig*
wlanS1GConfig*
wlanVHTConfig*
Signal Transmission
wlanBCCEncode*
wlanBCCInterleave*
wlanConstellationMap*
wlanDMGConfig*
wlanHTData*
wlanHTLTF*
wlanHTSIG*
wlanHTSTF*
wlanLLTF*
wlanLSIG*
wlanLSTF*
wlanNonHTData*

1 Tutorials

1-34

wlanScramble*
wlanSegmentDeparseSymbols*
wlanSegmentParseBits*
wlanStreamParse*
wlanVHTData*
wlanVHTLTF*
wlanVHTSIGA*
wlanVHTSIGB*
wlanVHTSTF*
wlanWaveformGenerator*
Signal Reception
wlanBCCDecode*
wlanBCCDeinterleave*
wlanCoarseCFOEstimate*
wlanConstellationDemap*
wlanDMGDataBitRecover*
wlanDMGHeaderBitRecover*
wlanFormatDetect*
wlanFieldIndices*
wlanFineCFOEstimate*
wlanGolaySequence*
wlanHTDataRecover*
wlanHTLTFChannelEstimate*
wlanHTLTFDemodulate*
wlanHTSIGRecover*
wlanLLTFChannelEstimate*
wlanLLTFDemodulate*
wlanLSIGRecover*

 Functions and System Objects Supported for MATLAB Coder and Compiler

1-35

wlanNonHTDataRecover*
wlanPacketDetect*
wlanScramble*
wlanSegmentDeparseBits*
wlanSegmentParseSymbols*
wlanStreamDeparse*
wlanSymbolTimingEstimate*
wlanVHTDataRecover*
wlanVHTLTFChannelEstimate*
wlanVHTLTFDemodulate*
wlanVHTSIGARecover*
wlanVHTSIGBRecover*
Propagation Channel
wlanTGacChannel*
wlanTGahChannel*
wlanTGnChannel*

Note WLAN System Toolbox functionality with the MATLAB Function block is not
supported.

1 Tutorials

1-36

Build DMG PPDU
Build DMG PPDUs by using the waveform generator function.

Waveform Generator

Create an DMG configuration object.

dmg = wlanDMGConfig

dmg =
 wlanDMGConfig with properties:

 MCS: 0
 TrainingLength: 0
 PSDULength: 1000
 ScramblerInitialization: 2
 Turnaround: 0

Generate the DMG PPDU. The length of the input data sequence in bits must be 8 times
the length of the PSDU, which is expressed in bytes. Turn off windowing.

psdu = randi([0 1],dmg.PSDULength*8,1);
tx = wlanWaveformGenerator(psdu,dmg,'WindowTransitionTime',0);

The waveform has MCS=0, which is single carrier and DBPSK modulated. Plot the
constellation of the waveform.

scatterplot(tx)

 Build DMG PPDU

1-37

See Also
“Build HT PPDU” on page 1-44 | “Build Non-HT PPDU” on page 1-47 | “Build VHT
PPDU” on page 1-41 | “Build S1G PPDU” on page 1-39

1 Tutorials

1-38

Build S1G PPDU
Build S1G PPDUs by using the waveform generator function.

Waveform Generator

Create an S1G configuration object.

s1g = wlanS1GConfig;

Generate the S1G PPDU. The length of the input data sequence in bits must be 8 times
the length of the PSDU, which is expressed in bytes. Turn off windowing.

x = randi([0 1],s1g.PSDULength*8,1);
y = wlanWaveformGenerator(x,s1g,'WindowTransitionTime',0);

Plot the magnitude of the waveform.

t = ((1:length(y))'-1)/80e6;
plot(t,abs(y))
xlabel('Time (s)')
ylabel('Magnitude (V)')

 Build S1G PPDU

1-39

See Also
“Build DMG PPDU” on page 1-37 | “Build HT PPDU” on page 1-44 | “Build Non-HT
PPDU” on page 1-47 | “Build VHT PPDU” on page 1-41

1 Tutorials

1-40

Build VHT PPDU
Build VHT PPDUs by using the waveform generator function or by building each field
individually.

Waveform Generator

Create a VHT configuration object.

vht = wlanVHTConfig;

Generate the VHT PPDU. The length of the input data sequence in bits must be 8 times
the length of the PSDU, which is expressed in bytes. Turn off windowing.

x = randi([0 1],vht.PSDULength*8,1);
y = wlanWaveformGenerator(x,vht,'WindowTransitionTime',0);

Plot the magnitude of the waveform.

t = ((1:length(y))'-1)/80e6;
plot(t,abs(y))
xlabel('Time (s)')
ylabel('Magnitude (V)')

 Build VHT PPDU

1-41

Individual PPDU Fields

Create L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-LTF, and VHT-SIG-B
preamble fields.

lstf = wlanLSTF(vht);
lltf = wlanLLTF(vht);
lsig = wlanLSIG(vht);
vhtSigA = wlanVHTSIGA(vht);
vhtstf = wlanVHTSTF(vht);
vhtltf = wlanVHTLTF(vht);
vhtSigB = wlanVHTSIGB(vht);

1 Tutorials

1-42

Generate the VHT-Data field using input data field x, which was used as an input to the
waveform generator.

vhtData = wlanVHTData(x,vht);

Concatenate the individual fields to create a single PPDU.

z = [lstf; lltf; lsig; vhtSigA; vhtstf; vhtltf; vhtSigB; vhtData];

Verify that the PPDUs created by the two methods are identical.

isequal(y,z)

ans =

 logical

 1

See Also
“Build DMG PPDU” on page 1-37 | “Build HT PPDU” on page 1-44 | “Build Non-HT
PPDU” on page 1-47 | “Build S1G PPDU” on page 1-39

 See Also

1-43

Build HT PPDU
Build HT PPDUs by using the waveform generator function or by building each field
individually.

Waveform Generator

Create an HT configuration object.

ht = wlanHTConfig;

Generate the HT PPDU. The length of the input data sequence in bits must be 8 times
the length of the PSDU, which is expressed in bytes. Turn windowing off.

x = randi([0 1],ht.PSDULength*8,1);
y = wlanWaveformGenerator(x,ht,'WindowTransitionTime',0);

Plot the magnitude of the waveform.

t = ((1:length(y))'-1)/20e6;
plot(t,abs(y))
xlabel('Time (s)')
ylabel('Magnitude (V)')

1 Tutorials

1-44

Individual PPDU Fields

Create L-STF, L-LTF, L-SIG, HT-SIG, HT-STF, and HT-LTF preamble fields.
lstf = wlanLSTF(ht);
lltf = wlanLLTF(ht);
lsig = wlanLSIG(ht);
htsig = wlanHTSIG(ht);
htstf = wlanHTSTF(ht);
htltf = wlanHTLTF(ht);

Generate the HT-Data field using input data field x, which is the same input signal that
was used with the waveform generator.
htData = wlanHTData(x,ht);

 Build HT PPDU

1-45

Concatenate the individual fields to create a single PPDU.

z = [lstf; lltf; lsig; htsig; htstf; htltf; htData];

Verify that the PPDUs created by the two methods are identical.

isequal(y,z)

ans =

 logical

 1

See Also
“Build DMG PPDU” on page 1-37 | “Build Non-HT PPDU” on page 1-47 | “Build S1G
PPDU” on page 1-39 | “Build VHT PPDU” on page 1-41

1 Tutorials

1-46

Build Non-HT PPDU
Build non-HT PPDUs by using the waveform generator function or by building each field
individually.

Waveform Generator

Create a non-HT configuration object.

nht = wlanNonHTConfig;

Generate the non-HT PPDU. The length of the input data sequence in bits must be 8
times the length of the PSDU, which is expressed in bytes. Turn off windowing.

x = randi([0 1],nht.PSDULength*8,1);
y = wlanWaveformGenerator(x,nht,'WindowTransitionTime',0);

Plot the magnitude of the waveform.

t = ((1:length(y))'-1)/20e6;
plot(t,abs(y))
xlabel('Time (s)')
ylabel('Magnitude (V)')

 Build Non-HT PPDU

1-47

Individual PPDU Fields

Create L-STF, L-LTF, and L-SIG preamble fields.

lstf = wlanLSTF(nht);
lltf = wlanLLTF(nht);
lsig = wlanLSIG(nht);

Generate the Non-HT-data field using input data field x, which was used as the input to
the waveform generator.

nhtData = wlanNonHTData(x,nht);

Concatenate the individual fields to create a single PPDU.

1 Tutorials

1-48

z = [lstf; lltf; lsig; nhtData];

Verify that the PPDUs created by the two methods are identical.

isequal(y,z)

ans =

 logical

 1

See Also
“Build DMG PPDU” on page 1-37 | “Build HT PPDU” on page 1-44 | “Build S1G PPDU”
on page 1-39 | “Build VHT PPDU” on page 1-41

 See Also

1-49

Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading
Channel

Transmit a VHT waveform through a noisy MIMO channel. Extract the L-SIG, VHT-
SIG-A, and VHT-SIG-B fields and verify that they were correctly recovered.

Set the parameters used throughout the example.
cbw = 'CBW40'; % Channel bandwidth
fs = 40e6; % Sample rate (Hz)
ntx = 2; % Number of transmit antennas
nsts = 2; % Number of space-time streams
nrx = 3; % Number of receive antennas

Create a VHT configuration object that supports a 2x2 MIMO transmission and has an
APEP length of 2000.
vht = wlanVHTConfig('ChannelBandwidth',cbw,'APEPLength',2000, ...
 'NumTransmitAntennas',ntx,'NumSpaceTimeStreams',nsts, ...
 'SpatialMapping','Direct','STBC',false);

Generate a VHT waveform containing a random PSDU.
txPSDU = randi([0 1],vht.PSDULength*8,1);
txPPDU = wlanWaveformGenerator(txPSDU,vht);

Create a 2x2 TGac channel and an AWGN channel with an SNR=10 dB.
tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',ntx,'NumReceiveAntennas',nrx, ...
 'LargeScaleFadingEffect','Pathloss and shadowing', ...
 'DelayProfile','Model-C');

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',10);

Pass the VHT waveforms through a 2x2 TGac channel and add the AWGN channel noise.
rxPPDU = chNoise(tgacChan(txPPDU));

Add additional white noise corresponding to a receiver with a 9 dB noise figure. The
noise variance is equal to k*T*B*F, where k is Boltzmann's constant, T is the ambient
temperature, B is the channel bandwidth (sample rate), and F is the receiver noise
figure.

1 Tutorials

1-50

nVar = 10^((-228.6+10*log10(290) + 10*log10(fs) + 9)/10);
rxNoise = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

rxPPDU = rxNoise(rxPPDU);

Find the start and stop indices for all component fields of the PPDU.

ind = wlanFieldIndices(vht)

ind =

 struct with fields:

 LSTF: [1 320]
 LLTF: [321 640]
 LSIG: [641 800]
 VHTSIGA: [801 1120]
 VHTSTF: [1121 1280]
 VHTLTF: [1281 1600]
 VHTSIGB: [1601 1760]
 VHTData: [1761 25600]

The preamble is contained in the first 1760 symbols. Plot the preamble.

plot(abs(rxPPDU(1:1760)))

 Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel

1-51

Extract the L-LTF from the received PPDU using the start and stop indices determined
by the wlanFieldIndices function. Demodulate the L-LTF and estimate the channel
coefficients.

rxLLTF = rxPPDU(ind.LLTF(1):ind.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,vht);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,vht);

Extract the L-SIG field from the received PPDU and recover its information bits.

rxLSIG = rxPPDU(ind.LSIG(1):ind.LSIG(2),:);
infoLSIG = wlanLSIGRecover(rxLSIG,chEstLLTF,nVar,cbw);

1 Tutorials

1-52

Inspect the L-SIG rate information and confirm that the sequence [1 1 0 1] is
received. This sequence corresponds to a 6 MHz data rate, which is used for all VHT
transmissions.
rate = infoLSIG(1:4)'

rate =

 1x4 int8 row vector

 0 1 1 1

Extract the VHT-SIG-A and confirm that the CRC check passed.
rxVHTSIGA = rxPPDU(ind.VHTSIGA(1):ind.VHTSIGA(2),:);
[infoVHTSIGA,failCRC] = wlanVHTSIGARecover(rxVHTSIGA, ...
 chEstLLTF,nVar,cbw);
failCRC

failCRC =

 logical

 1

Extract and demodulate the VHT-LTF. Use the demodulated signal to estimate the
channel coefficients needed to recover the VHT-SIG-B field.
rxVHTLTF = rxPPDU(ind.VHTLTF(1):ind.VHTLTF(2),:);
demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEstVHTLTF = wlanVHTLTFChannelEstimate(demodVHTLTF,vht);

Extract and recover the VHT-SIG-B.
rxVHTSIGB = rxPPDU(ind.VHTSIGB(1):ind.VHTSIGB(2),:);
infoVHTSIGB = wlanVHTSIGBRecover(rxVHTSIGB,chEstVHTLTF,nVar,cbw);

Verify that the APEP length, contained in the first 19 bits of the VHT-SIG-B,
corresponds to the specified length of 2000 bits.
pktLbits = infoVHTSIGB(1:19)';
pktLen = bi2de(double(pktLbits))*4

 Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel

1-53

pktLen =

 1676920

1 Tutorials

1-54

End-to-End VHT Simulation with Frequency Correction
This example shows how to generate, transmit, recover and view a VHT MIMO
waveform.

Steps in the example:

• Transmit a VHT waveform through a MIMO channel with AWGN
• Perform a two-stage process to estimate and correct for a frequency offset
• Estimate the channel response
• Recover the VHT data field
• Compare the transmitted and received PSDUs to determine if bit errors occurred

Set the parameters used throughout the example.

cbw = 'CBW160'; % Channel bandwidth
fs = 160e6; % Sample rate (Hz)
ntx = 2; % Number of transmit antennas
nsts = 2; % Number of space-time streams
nrx = 2; % Number of receive antennas

Create a VHT configuration object that supports a 2x2 MIMO transmission and has an
APEP length of 2000.

vht = wlanVHTConfig('ChannelBandwidth',cbw,'APEPLength',2000, ...
 'NumTransmitAntennas',ntx,'NumSpaceTimeStreams',nsts, ...
 'SpatialMapping','Direct','STBC',false);

Generate a VHT waveform containing a random PSDU.

txPSDU = randi([0 1],vht.PSDULength*8,1);
txPPDU = wlanWaveformGenerator(txPSDU,vht);

Create a 2x2 TGac channel and an AWGN channel.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',ntx,'NumReceiveAntennas',nrx, ...
 'LargeScaleFadingEffect','Pathloss and shadowing', ...
 'DelayProfile','Model-C');
awgnChan = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Create a phase/frequency offset object.

 End-to-End VHT Simulation with Frequency Correction

1-55

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');

Calculate the noise variance for a receiver with a 9 dB noise figure. Pass the transmitted
waveform through the noisy TGac channel.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);
rxPPDU = awgnChan(tgacChan(txPPDU), nVar);

Introduce a frequency offset of 500 Hz.

rxPPDUcfo = pfOffset(rxPPDU,500);

Find the start and stop indices for all component fields of the PPDU.

ind = wlanFieldIndices(vht);

Extract the L-STF. Estimate and correct for the carrier frequency offset.

rxLSTF = rxPPDUcfo(ind.LSTF(1):ind.LSTF(2),:);

foffset1 = wlanCoarseCFOEstimate(rxLSTF,cbw);
rxPPDUcorr = pfOffset(rxPPDUcfo,-foffset1);

Extract the L-LTF from the corrected signal. Estimate and correct for the residual
frequency offset.

rxLLTF = rxPPDUcorr(ind.LLTF(1):ind.LLTF(2),:);

foffset2 = wlanFineCFOEstimate(rxLLTF,cbw);
rxPPDU2 = pfOffset(rxPPDUcorr,-foffset2);

Extract and demodulate the VHT-LTF. Estimate the channel coefficients.

rxVHTLTF = rxPPDU2(ind.VHTLTF(1):ind.VHTLTF(2),:);
dLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEst = wlanVHTLTFChannelEstimate(dLTF,vht);

Extract the VHT data field from the received and frequency-corrected PPDU. Recover the
data field.

rxVHTData = rxPPDU2(ind.VHTData(1):ind.VHTData(2),:);
rxPSDU = wlanVHTDataRecover(rxVHTData,chEst,nVar,vht);

Calculate the number of bit errors in the received packet.

numErr = biterr(txPSDU,rxPSDU)

1 Tutorials

1-56

numErr =

 0

 End-to-End VHT Simulation with Frequency Correction

1-57

Transmit-Receive Chain
In this section...
“Transmit Processing Chain” on page 1-58
“Receiver Processing Chain” on page 1-64

WLAN System Toolbox functionality includes elements of a standard transmitter–
channel–receiver processing chain.

• Transmitter functions enable simulation of the various IEEE 802.11 34 formats. The
simulated waveform includes preamble and data fields of the PPDU. You can use this
waveform in link-level simulations. You can also use it as a test signal for test devices
and equipment.

• Channel functions model various types of AWGN, fading, or moving channel
environmental effects.

• Receiver functions recover the transmitted signal.

Transmit Processing Chain
WLAN System Toolbox functions enable you to generate waveforms for a complete PPDU
or for the individual fields of VHT, HT-mixed, and non-HT format PPDUs.

VHT Data Transmit Processing Chain

As described in IEEE 802.11ac-2013 [3], Section 22 specifies the PHY entity for a very
high throughput (VHT) orthogonal frequency division multiplexing (OFDM) system. A

3. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

4. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1 Tutorials

1-58

VHT STA must be capable of transmitting and receiving HT-PHY and non-HT-PHY-
compliant PPDUs. Specifically, the VHT PHY is based on the HT PHY defined in Section
20, which in turn is based on the OFDM PHY defined in Section 18. The VHT PHY
extends the maximum number of space-time streams supported to eight and provides
support for downlink multi-user (MU) transmissions. A downlink MU transmission
supports up to four users with up to four space-time streams per user, with the total
number of space-time streams not exceeding eight.

IEEE Std 802.11ac-2013 [3], Section 22 defines requirements for physical layer
processing associated with each PPDU field for the VHT format.

 Transmit-Receive Chain

1-59

1 Tutorials

1-60

HT Data Transmit Processing Chain

IEEE 802.11-2012 [2], Section 20 defines requirements for physical layer processing
associated with each PPDU field for the HT-mixed format.

 Transmit-Receive Chain

1-61

Non-HT Data Transmit Processing Chain

IEEE 802.11-2012 [2], Section 18 defines requirements for physical layer processing
associated with each PPDU field for the OFDM modulation scheme. IEEE 802.11-2012
[2], Section 17, and Section 19 define requirements for physical layer processing
associated with each PPDU field for the DSSS modulation scheme.

1 Tutorials

1-62

 Transmit-Receive Chain

1-63

Receiver Processing Chain

WLAN System Toolbox functions enable you to recover transmitted VHT, HT-mixed, and
non-HT format PPDUs. The receive processing chain includes synchronization, OFDM
demodulation, channel estimation, equalization, and signal and data recovery.

VHT Data Receive Processing Chain

This figure shows the receiver elements used to process the VHT Data field. The “Signal
Reception” category includes a list of all receiver functions in the WLAN System Toolbox.

1 Tutorials

1-64

 Transmit-Receive Chain

1-65

HT Data Receive Processing Chain

This figure shows the receiver elements used to process the HT Data field. The “Signal
Reception” category includes a list of all receiver functions in the WLAN System Toolbox.

1 Tutorials

1-66

 Transmit-Receive Chain

1-67

Non-HT Data Receive Processing Chain

This figure shows the receiver elements used to process the non-HT Data field. The
“Signal Reception” category includes a list of all receiver functions in the WLAN System
Toolbox.

1 Tutorials

1-68

 Transmit-Receive Chain

1-69

References

[1] IEEE 802.11™: Wireless LANs. http://standards.ieee.org/about/get/802/802.11.html

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[3] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[4] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

[5] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac.
2nd Edition. United Kingdom: Cambridge University Press, 2013.

See Also
“Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel” on page 1-50
| “End-to-End VHT Simulation with Frequency Correction” on page 1-55

1 Tutorials

1-70

Delay Profile and Fluorescent Lighting Effects
This example demonstrates the impact of changing the TGac delay profile, and it shows
how fluorescent lighting affects the time response of the channel.

Delay Profile Effects

Create VHT configuration object. Set the sample rate to 80 MHz.

vht = wlanVHTConfig;
fs = 80e6;

Generate random binary data and create a transmit waveform using the configuration
objects.

d = randi([0 1],8*vht.PSDULength,1);
txSig = wlanWaveformGenerator(d,vht);

Create a TGac channel object. Set the delay profile to 'Model-A', which corresponds to
flat fading. Disable the large-scale fading effects.

tgacChan = wlanTGacChannel('SampleRate',fs, ...
 'ChannelBandwidth',vht.ChannelBandwidth, ...
 'DelayProfile','Model-A', ...
 'LargeScaleFadingEffect','None');

Pass the transmitted waveform through the TGac channel.

rxSigA = tgacChan(txSig);

Set the delay profile to 'Model-C'. Model-C corresponds to a multipath channel having
14 distinct paths, with a 30 ns RMS delay spread. The maximum delay spread is 200 ns,
which corresponds to a coherence bandwidth of 2.5 MHz.

release(tgacChan)
tgacChan.DelayProfile = 'Model-C';

Pass the waveform through the model-C channel.

rxSigC = tgacChan(txSig);

Create a spectrum analyzer and use it to visualize the spectrum of the received signals.

saScope = dsp.SpectrumAnalyzer('SampleRate',fs, ...
 'ShowLegend',true,'ChannelNames',{'Model-A','Model-C'}, ...

 Delay Profile and Fluorescent Lighting Effects

1-71

 'SpectralAverages',10);
saScope([rxSigA rxSigC])

As expected, the frequency response of the model-A signal is flat across the 80 MHz
bandwidth. Conversely, the model-C frequency response varies because its coherence
bandwidth is much smaller than the channel bandwidth.

Fluorescent Effects

Release the TGac channel, and set its delay profile to 'Model-D'. Disable the
fluorescent lighting effect.

release(tgacChan)
tgacChan.DelayProfile = 'Model-D';
tgacChan.FluorescentEffect = false;

1 Tutorials

1-72

To better illustrate the Doppler effects of fluorescent lighting, change the bandwidth and
sample rate of the channel. Generate a test waveform of all ones.

tgacChan.ChannelBandwidth = 'CBW20';
fs = 20e6;
tgacChan.SampleRate = fs;

txSig = ones(5e5,1);

To ensure repeatability, set the global random number generator to a fixed value.

rng(37)

Pass the waveform through the TGac channel.

rxSig0 = tgacChan(txSig);

Enable the fluorescent lighting effect. Reset the random number generator, and pass the
waveform through the channel.

release(tgacChan)
tgacChan.FluorescentEffect = true;
rng(37)
rxSig1 = tgacChan(txSig);

Determine the time axis and channel filter delay.

t = ((1:size(rxSig0,1))'-1)/fs;
fDelay = tgacChan.info.ChannelFilterDelay;

Plot the magnitude of the received signals while accounting for the channel filter delay.

plot(t(fDelay+1:end),[abs(rxSig0(fDelay+1:end)) abs(rxSig1(fDelay+1:end))])
xlabel('Time (s)')
ylabel('Magnitude (V)')
legend('Fluorescent Off','Fluorescent On','location','best')

 Delay Profile and Fluorescent Lighting Effects

1-73

Fluorescent lighting introduces a Doppler component at twice the power line frequency
(120 Hz in the U.S.).

Confirm that the peaks are separated by approximately 0.0083 s (inverse of 120 Hz) by
measuring distance between the second and third peaks.

[~,loc] = findpeaks(abs(rxSig1(1e5:4e5)));
peakTimes = loc/fs;
peakSeparation = diff(peakTimes)

peakSeparation =

1 Tutorials

1-74

 0.0085

 Delay Profile and Fluorescent Lighting Effects

1-75

Generate Multi-User VHT Waveform
This example shows how to generate a multi-user VHT waveform from individual
components. It also shows how to generate the same waveform by using the
wlanWaveformGenerator function. The data fields from the two approaches are
compared and shown to be identical.

Create a VHT configuration object having 3 users and 3 transmit antennas.

vht = wlanVHTConfig('NumUsers',3,'NumTransmitAntennas',3);

Set the number of space-time streams to the vector [1 1 1], which indicates that each
user is assigned one space-time stream. Set the user positions to [0 1 2]. Set the group
ID to 5. Group ID values from 1 to 62 apply for multi-user operation.

vht.NumSpaceTimeStreams = [1 1 1];
vht.UserPositions = [0 1 2];
vht.GroupID = 5;

Set a different MCS value for each user.

vht.MCS = [0 2 4];

Set the APEP length to 2000, 1400, and 1800 bytes. Each element corresponds to the
number of bytes assigned to each user.

vht.APEPLength = [2000 1400 1800]

vht =

 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW80'
 NumUsers: 3
 UserPositions: [0 1 2]
 NumTransmitAntennas: 3
 NumSpaceTimeStreams: [1 1 1]
 SpatialMapping: 'Direct'
 MCS: [0 2 4]
 ChannelCoding: 'BCC'
 APEPLength: [2000 1400 1800]
 GuardInterval: 'Long'
 GroupID: 5

1 Tutorials

1-76

 Read-only properties:
 PSDULength: [2000 6008 12019]

Display the PSDU lengths for the three users. The PSDU length is a function of both the
APEP length and the MCS value.

vht.PSDULength

ans =

 2000 6008 12019

Display the field indices for the VHT waveform.

ind = wlanFieldIndices(vht)

ind =

 struct with fields:

 LSTF: [1 640]
 LLTF: [641 1280]
 LSIG: [1281 1600]
 VHTSIGA: [1601 2240]
 VHTSTF: [2241 2560]
 VHTLTF: [2561 3840]
 VHTSIGB: [3841 4160]
 VHTData: [4161 48000]

Create the individual fields that comprise the VHT waveform.

lstf = wlanLSTF(vht);
lltf = wlanLLTF(vht);
lsig = wlanLSIG(vht);
[vhtsigA,sigAbits] = wlanVHTSIGA(vht);
vhtstf = wlanVHTSTF(vht);
vhtltf = wlanVHTLTF(vht);
[vhtsigB,sigBbits] = wlanVHTSIGB(vht);

 Generate Multi-User VHT Waveform

1-77

Extract the first two VHT-SIG-A information bits and convert them to their decimal
equivalent.

bw = bi2de(double(sigAbits(1:2)'))

bw =

 2

The value, 2, corresponds to an 80 MHz bandwidth (see wlanVHTSIGA).

Extract VHT-SIG-A information bits 5 through 10, and convert them to their decimal
equivalent.

groupid = bi2de(double(sigAbits(5:10)'))

groupid =

 5

The extracted group ID, 5, matches the corresponding property in the VHT configuration
object.

Extract the packet length from the VHT-SIG-B information bits. For multi-user
operation with an 80 MHz bandwidth, the first 19 bits contain the APEP length
information. Convert the field lengths to their decimal equivalents. Multiply them by 4
because the length of the VHT-SIG-B field is expressed in units of 4 bytes.

pktLen = bi2de(double(sigBbits(1:19,:)'))*4

pktLen =

 2000
 1400
 1800

Confirm that the extracted APEP length matches the value set in the configuration
object.

1 Tutorials

1-78

isequal(pktLen',vht.APEPLength)

ans =

 logical

 1

Extract the MCS values from the VHT-SIG-B information bits. The MCS component is
specified by bits 20 to 23.

mcs = bi2de(double(sigBbits(20:23,:)'))

mcs =

 0
 2
 4

The values correspond to those set in the VHT configuration object.

Create three data sequences, one for each user.

d1 = randi([0 1],vht.PSDULength(1)*8,1);
d2 = randi([0 1],vht.PSDULength(2)*8,1);
d3 = randi([0 1],vht.PSDULength(3)*8,1);

Generate a VHT data field using these data sequences.

vhtdata = wlanVHTData({d1 d2 d3},vht);

Generate a multi-user VHT waveform with windowing is disabled. Extract the data field
from the waveform.

wv = wlanWaveformGenerator({d1 d2 d3},vht,'WindowTransitionTime',0);

wvdata = wv(ind.VHTData(1):ind.VHTData(2),:);

Confirm that the two generation approaches produce identical results.

isequal(vhtdata,wvdata)

 Generate Multi-User VHT Waveform

1-79

ans =

 logical

 1

1 Tutorials

1-80

Basic VHT Data Recovery Steps
This example shows how to perform basic VHT data recovery. It also shows how to
recover VHT data when the received signal has a carrier frequency offset. Similar
procedures can be used to recover data with the HT and non-HT formats.

Basic Data Recovery

The WLAN System Toolbox™ provides functions to generate and recover IEEE®
802.11ac™ standards compliant waveforms. Data recovery is accomplished by these
steps:

1 Generate a VHT waveform
2 Pass the waveform through a channel
3 Extract the VHT-LTF and demodulate
4 Estimate the channel by using the demodulated VHT-LTF
5 Extract the data field
6 Recover the data by using the channel and noise variance estimates

The block diagram shows these steps, along with their corresponding commands.

 Basic VHT Data Recovery Steps

1-81

Create VHT format configuration object.

vht = wlanVHTConfig;

Create a VHT transmit waveform by using the VHT configuration object. Set the data
sequence to [1;0;1;1]. The data sequence is repeated to generate the specified number
of packets.

txSig = wlanWaveformGenerator([1;0;1;1],vht);

Pass the received signal through an AWGN channel.

rxSig = awgn(txSig,10);

Determine the field indices of the waveform.

ind = wlanFieldIndices(vht);

Extract the VHT-LTF from the received signal.

rxVHTLTF = rxSig(ind.VHTLTF(1):ind.VHTLTF(2),:);

1 Tutorials

1-82

Demodulate the VHT-LTF. Estimate the channel response by using the demodulated
signal.

demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEst = wlanVHTLTFChannelEstimate(demodVHTLTF,vht);

Extract the VHT data field.

rxData = rxSig(ind.VHTData(1):ind.VHTData(2),:);

Recover the information bits by using the channel and noise variance estimates. Confirm
that the first 8 bits match two repetitions of the input data sequence of [1;0;1;1].

rxBits = wlanVHTDataRecover(rxData,chEst,0.1,vht);

rxBits(1:8)

ans =

 8x1 int8 column vector

 1
 0
 1
 1
 1
 0
 1
 1

Data Recovery with Frequency Correction

Data recovery when a carrier frequency offset is present is accomplished by these steps:

1 Generate a VHT waveform
2 Pass the waveform through a channel
3 Extract the L-STF and perform a coarse frequency offset estimate
4 Correct for the offset by using the coarse estimate
5 Extract the L-LTF and perform a fine frequency offset estimate
6 Correct for the offset by using the fine estimate

 Basic VHT Data Recovery Steps

1-83

7 Extract the VHT-LTF and demodulate
8 Estimate the channel by using the demodulated VHT-LTF
9 Extract the data field
10 Recover the data by using the channel and noise variance estimates

The block diagram shows these steps, along with their corresponding commands.

Set the channel bandwidth and sample rate.

cbw = 'CBW160';
fs = 160e6;

Create a VHT configuration object that supports a 2x2 MIMO transmission.

vht = wlanVHTConfig('ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',2,'NumSpaceTimeStreams',2);

Generate a VHT waveform containing a random PSDU.

txPSDU = randi([0 1],vht.PSDULength*8,1);
txSig = wlanWaveformGenerator(txPSDU,vht);

Create a 2x2 TGac channel.

1 Tutorials

1-84

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',2,'NumReceiveAntennas',2);

Create a phase and frequency offset object.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');

Pass the transmitted waveform through the noisy TGac channel.

rxSigNoNoise = tgacChan(txSig);
rxSig = awgn(rxSigNoNoise,15);

Introduce a frequency offset of 500 Hz to the received signal.

rxSigFreqOffset = pfOffset(rxSig,500);

Find the start and stop indices for all component fields of the PPDU.

ind = wlanFieldIndices(vht);

Extract the L-STF. Estimate and correct for the carrier frequency offset.

rxLSTF = rxSigFreqOffset(ind.LSTF(1):ind.LSTF(2),:);

foffset1 = wlanCoarseCFOEstimate(rxLSTF,cbw);
rxSig1 = pfOffset(rxSigFreqOffset,-foffset1);

Extract the L-LTF from the corrected signal. Estimate and correct for the residual
frequency offset.

rxLLTF = rxSig1(ind.LLTF(1):ind.LLTF(2),:);

foffset2 = wlanFineCFOEstimate(rxLLTF,cbw);
rxSig2 = pfOffset(rxSig1,-foffset2);

Extract and demodulate the VHT-LTF. Estimate the channel coefficients.

rxVHTLTF = rxSig2(ind.VHTLTF(1):ind.VHTLTF(2),:);
demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEst = wlanVHTLTFChannelEstimate(demodVHTLTF,vht);

Extract the VHT data field from the received and frequency-corrected PPDU. Recover the
data field.

rxData = rxSig2(ind.VHTData(1):ind.VHTData(2),:);
rxPSDU = wlanVHTDataRecover(rxData,chEst,0.03,vht);

 Basic VHT Data Recovery Steps

1-85

Calculate the number of bit errors in the received packet.

numErr = biterr(txPSDU,rxPSDU)

numErr =

 0

1 Tutorials

1-86

Packet Size and Duration Dependencies
WLAN standards specify a maximum packet duration (TXTIME) for the various formats.
The S1G format additionally specifies the maximum PSDU length (PSDU_LENGTH)
and number of symbols (NSYM). These WLAN properties are a function of transmission
properties set in WLAN System Toolbox configuration objects. The settings of WLAN
format-specific configuration objects are validated when the object is used. Command-
line feedback informs you when the configuration violates the packet size or duration
limits.

This table indicates relevant properties that help determine the packet duration and
length for the various WLAN formats. It also provides references to the IEEE standards
for further details.
WLAN
Format

Length-Related Validation Relevant and Dependent Properties

DMG TXTIME requires validation.

TXTIME is defined by the equations in
IEEE Std 802.11ad [2], Section
21.12.3.

As specified by aPPDUMaxTime in
Table 21-31, the maximum TXTIME is
2 ms.

1 MCS (dmg_1)

2 PSDULength
3 TrainingLength (dmg_1)

4 PacketType (dmg_1)

5 BeamTrackingRequest (dmg_1)

(dmg_1) The property helps determine
whether the packet is a beam
refinement protocol (BRP) packet
containing training fields or if it is a
general packet signaling the number
of fields to append. For more
information, see 802.11ad [2], Table 4.

 Packet Size and Duration Dependencies

1-87

WLAN
Format

Length-Related Validation Relevant and Dependent Properties

S1G TXTIME, PSDU_LENGTH, and NSYM
require validation.

The equations for all three are defined
in draft standard IEEE P802.11ah/
D5.0, Section 24.4.3, and the
maximum TXTIME and
PSDU_LENGTH is defined in Table
24-37.

In Table 24-37:

• As specified by aPPDUMaxTime,
the maximum TXTIME is 27.92
ms. This TXTIME is the maximum
PPDU duration for an S1G_1M
PPDU with:

• A bandwidth of 1 MHz
• S1G MCS set to 10
• One spatial stream, limited by a

PSDU length of 511 octets.
• As specified by aPPDUMaxLength,

the maximum PSDU_LENGTH is
797,159 octets. This PSDU length
is the maximum length in octets for
an S1G SU PPDU with:

• A bandwidth of 16 MHz
• S1G-MCS set to 9
• Four spatial streams, limited by

511 data symbols supported by
the Length field in the S1G SIG
field, excluding the SERVICE
field and tail bits.

• The maximum NSYM is 511.

For TXTIME, the relevant properties
are:

1 ChannelBandwidth
2 STBC (s1g_1)

3 GuardInterval
4 ChannelCoding (MU)

5 APEPLength (MU)

6 PSDULength – This property is
read-only. When undefined,
PSDULength is returned as
empty, []. An empty return can
happen when the set of property
values for the object define an
invalid state. (MU)

7 MCS (MU)

8 NumSpaceTimeStreams (MU)

9 NumUsers

For PSDU_LENGTH and NSYM, the
relevant properties are:

1 ChannelBandwidth
2 STBC (s1g_1)

3 ChannelCoding (MU)

4 APEPLength (MU)

5 PSDULength – This property is
read-only. When undefined,
PSDULength is returned as
empty, []. An empty return can
happen when the set of property
values for the object define an
invalid state. (MU)

1 Tutorials

1-88

WLAN
Format

Length-Related Validation Relevant and Dependent Properties

6 MCS (MU)

7 NumSpaceTimeStreams (MU)

8 NumUsers
(s1g_1) The property is relevant only
when NumUsers = 1.

(MU) The property has multiple values
for multi-user operation.

VHT TXTIME requires validation.

TXTIME is defined by the equations in
IEEE Std 802.11ac-2013 [3], Section
22.4.3 and the maximum TXTIME.

As specified by aPPDUMaxTime in
Table 22-29, the maximum TXTIME is
5.484 ms.

1 ChannelBandwidth
2 STBC (vht_1)

3 GuardInterval
4 ChannelCoding (MU)

5 APEPLength (MU)

6 PSDULength – This property is
read only. When undefined, it is
returned as an empty, [].(MU)

7 MCS (MU)

8 NumSpaceTimeStreams (MU)

9 NumUsers
(vht_1) The property is relevant only
when NumUsers = 1.

(MU) The property has multiple values
for multi-user operation.

 Packet Size and Duration Dependencies

1-89

WLAN
Format

Length-Related Validation Relevant and Dependent Properties

HT TXTIME requires validation.

TXTIME is defined by the equations in
IEEE Std 802.11-2012 [1], Section
20.4.3.

As specified by aPPDUMaxTime in
Table 20-25, the maximum TXTIME is
10 ms.

1 ChannelBandwidth
2 GuardInterval
3 ChannelCoding
4 PSDULength
5 MCS
6 NumSpaceTimeStreams
7 NumExtensionStreams

non-HT TXTIME requires validation.

TXTIME is defined by the equations in
IEEE Std 802.11-2012 [1], Section
18.4.3.

Based on equation 18–29 and a valid
combination of property settings, the
maximum TXTIME is 21.936 ms.

1 Modulation (non-ht_1)

2 PSDULength
3 MCS (non-ht_1)

4 DateRate (non-ht_1)

(non-ht_1) DataRate or MCS might be
relevant depending on the
Modulation setting.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

[3] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —

1 Tutorials

1-90

Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

 Packet Size and Duration Dependencies

1-91

